观察丨巨人网络:大模型推动游戏范式革新 巨人观现象是什么意思
9月23日消息,巨人网络AI实验室负责人丁超凡出席云栖大会论坛并作主题同享,第一次透露了自研大模型GiantGPT、BaiLing-TTS技术细节,并表示大模型推动了游戏范式革新,“游戏+AI”2.0已经从概念走给现实。
大模型技术落地,GiantGPT擅长人物扮演“会玩游戏”
现在云栖大会上,巨人网络首发了两款自研大模型GiantGPT、BaiLing-TTS及其落地应用。其中,GiantGPT是游戏行业首批完成备案的大模型其中一个,去年到现在,巨人网络AI实验室对其做了持续迭代和优化。
丁超凡说明,GiantGPT具备杰出的人物扮演力、生动的情景推理能力、定制化长短期记忆、深度支持游戏场景的能力,可以称之为壹个“会玩游戏”的人物扮演大模型。
数据是大模型能力的核心,巨人网络为此构建了壹个庞大数据集,基于互联网公开数据和自有数据,拥有大规模、多样性、高质量等优势,并形成壹个完整、高效的数据生产链路。
目前,GiantGPT已经在《征途》等多款巨人网络产品中落地,基于GiantGPT打造的陪伴型智能NPC,拥有性格、心情和自适应的长期记忆,为玩家提供亲密的陪伴关系尝试,提高用户留存。
除了大语言模型之外,巨人网络AI实验室现在也落地了行业内首个支持普通话和多种方言混说的TTS大模型——BaiLing-TTS。
当前,语音合成大模型技术在普通话领域已经取得了显著进展,但在方言领域的进步却特别缓慢,无法满足多样化的语音合成需求。中国拥有数十种主要方言,每一种方言都有特殊的语音特征和语法结构,这使得训练壹个覆盖各种方言的 TTS 大模型变得极具挑战。除了这些之后,方言语料库的稀缺以及高质量标注数据的匮乏,也进一步增加了技术难度。
为了化解这一难题,巨人网络AI实验室基于中国方言体系,构建了涵盖 20 种方言、超过 20 万小时的普通话和方言数据集,提出多项基于模型层面的技术创造,从而使BaiLing-TTS实现了普通话零样本克隆和高质量的方言语音、京剧唱腔合成效果。
大模型重塑游戏尝试和生产力革新
演讲中,丁超凡展示了巨人网络在大模型应用方面的一系列寻觅,涵盖AI绘画平台、UGC剧本创作工具、拟人化智能问答体系、AI原生游戏方法等,体现大模型对游戏尝试和生产力的革新。
一站式AI绘画生产平台“巨人摹境”重点支持团队协作,同时将一批自研AI视觉算法能力集成为职业流的形式,构建起协作式的标准AI美术生产管线,无需频繁导入导出或切换软件,就可在同一平台内完成复杂任务,进步创作效率;同时,集成了一键式职业流,简化大量复杂操作,适用于大规模美术生产职业。
基于多个自研大模型的能力,AI实验室还打造了针对宣发视频的智能剪辑和创作平台,提供热点视频自动解析和风格匹配,结合剧本大模型和TTS语音克隆的能力,达到一键成片的效果,大幅提高宣发视频的生产创作效率。
大模型技术落地,更终极的目标是重塑游戏尝试,推动方法层面的创造,《太空杀》项目做了积极寻觅。该游戏的UGC剧本创作工具引入了AI大模型帮写和TTS功能,从而降低内容创作门槛,激发玩家的内容创作热诚;AI原生游戏方法“AI残局挑战”则让玩家特别“迷恋”,带动了该游戏在短视频平台的相关指数翻倍,涌现出大量玩家自发同享各种趣味方法和策略诀窍。
“AI残局挑战”方法核心在于巨人网络自研的Multi-Agent框架设计,其中包含“协作”和“竞争”两大特性。怎样基于壹个控制体系去构建平衡的策略,是形成优质协作和竞争范式的决定因素。除了这些之后,由于需要玩家深度参和在里面,因此要重点关注玩家执行任务的灵活性和自在度,以及良好的运行机制保证游戏进程的合理演进。
“游戏+AI”2.0:从概念到现实
如果说生产力提效是“游戏+AI”1.0时代,那么依托AIGC技术实现的游戏方法革新则推动了“游戏+AI”进入2.0时代。
丁超凡认为,“游戏+AI”2.0将创新一种未来游戏形态:壹个能够打破传统制度约束,环境基于玩家数据反馈更新,剧情设计动态延展,而且有随机事件触发的非线性全球,给到玩家极高自在度,甚至为玩家提供定制化的游戏内容。
“兴奋的是,大家在‘AI残局挑战’方法中看到了这种游戏形态的也许性,玩家可以通过自身行为影响环境、改变故事务节的走给,而且全经过有着优质的互动尝试。它不仅仅是一次成功的技术突破和尝试,同时也实现了一种最新游戏形态从概念到现实的进阶。”
目前,巨人网络已构建了以自研大模型为核心的全方位基础能力,涵盖大语言模型、视觉内容生成、语音生成、AI Agents路线,GiantGPT、BaiLing-TTS等大模型在核心游戏业务场景实现了规模化应用落地,深层次地应用到游戏研发、运营、发行、测试等各个环节,形成高效的生产链路闭环。同时,结合大模型能力深入到游戏核心方法层面,打造出陪伴型AI智能助手、心情驱动的决策型AI,以及基于多智能体大模型的最新游戏范式。
展望未来,丁超凡强调,巨人网络AI实验室会更激进地寻觅基于大模型驱动的游戏方法创造,“出现壹个和玩家进行深层次交互、天然涌现出持久且极富吸引力内容的原生游戏全球,我认为并不遥远。”